
Application of Improved H-matrices in Micromagnetic Simulations 

Akihiro Ida1, Tadashi Ataka2, Yasuhito Takahashi3, Takeshi Mifune4 , Takeshi Iwashita5, and Atsushi Furuya6

1
Information Technology Center, The University of Tokyo, Tokyo 113-88658, Japan, ida@cc.u-tokyo.ac.jp 

2
Fujitsu Limited, Kawasaki 211-8588, Japan, ataka.tadashi@jp.fujitsu.com 

3
Department of Electrical Engineering, Doshisha University, Kyoto 610-0394, Japan, ytakahashi@mail.doshisha.ac.jp 
4
Department of Electrical Engineering, Kyoto University, Kyoto 615-8530, Japan, mifune.takeshi.3v@kyoto-u.ac.jp 

5
Information Initiative Center, Hokkaido University, Sapporo 060-0811, Japan, iwashita@iic.hokudai.ac.jp 

6
Fujitsu Limited, Kawasaki 211-8588, Japan, furuya.atsushi@jp.fujitsu.com 

This study examines the applicability of hierarchical-matrices (H-matrices) to the computation of the demagnetizing field that is the 

most-time consuming part in micromagnetic simulation. Given the fact that the kernel function of the convolution integral operator for 

the demagnetizing field has second order singularity, efficient approximation cannot be expected by using conventional H-matrices 

employing adaptive cross approximation (ACA) as the low-rank approximation. We introduce an improved H-matrices combined with 

a modified ACA to overcome this challenge. The efficiency of the method is confirmed through numerical experiments. 

Index Terms— Approximation algorithms, Integral equations, Micromagnetics, Numerical analysis. 

I. INTRODUCTION 

ICROMAGNETIC simulation is widely applied to de-

vise designs as a physical model of magnetic domain 

structures for ferromagnetic materials. In recent years, large-

scaled micromagnetic simulations have been conducted thanks 

to advanced computer technology. In order to perform fast 

computations needed during largescale micromagnetic 

simulation, one significant point to consider is the approach to 

be used to calculate the demagnetizing field. This is because 

direct calculation of it entails a computational cost of	������
whereas, the cost for the other variables is	�����, where �� is

the number of elements composing the magnetic material � in

the numerical simulation. 

Although a hybrid method of FEM and BEM [1] reduces 

the computational cost, it still requires ���	��, where �
  is

the number of elements on the surface of	∂�. In this study, we

consider the application of hierarchical matrices (H-matrices) 

[2]-[4] to the BEM in order to reduce the complexity from 

���	�� to ���
 log�
�.
II. FORMULATION FOR MICROMAGNETIC SIMULATION

In a micromagnetic simulation, the distribution of 
magnetization� is calculated by using the Landau–Lifshitz–

Gilbert equation. 

�1 � ��� ���� � ���������� � ��
�	

����������, (1)

where �, �,  and �	  are the damping constant, gyromagnetic

ratio, and saturation magnetization, respectively. �eff denotes

the effective magnetic field obtained as follows: 

���� � � � �! � �" ��#, (2)

where � , �!, �" ,  and �#  are the externally applied field,

demagnetizing field, anisotropy field, and exchange field, 

respectively.  

In order to compute �  using (1) and (2), the magnetic 

material � is first discretized into elements. The computation 

of � by using (1) and the calculations of both � 	and	�"  can

be performed in each element, independently. The evaluation 

of �#  only needs an interaction between adjacent elements.

Therefore, the computational cost for these variables is �����.
However, the calculation of the demagnetizing field �! in an

element requires its interaction with all the other elements. 

When we assume no free currents in the considered system, 

the demagnetizing field �! can be calculated as the gradient

of the magnetic scalar potential ', i.e. �! � �('. For a unit

normal vector ) on ∂�, it has to satisfy

 
∆'�+� � ,( ⋅ 	��+�0

	for	
	for	

+ ∈ �,
+ ∉ �

'�23 � '453	and	 6789:6) � 67;<:
6) � �	) ⋅ � on ∂�.

(3)

In accordance with how it is performed in [1], we split ' into 

two parts, ' ≔ '> � '�  such that ∆'>�+� � ( ⋅ 	�	for	+ ∈
�, '>�+� � 0		for	+ ∉ �	and	 67?�+�6) � ) ⋅ �	on	+ ∈ ∂� . As a

result, we find ∆'� � 0  with '��23 � '�453 � '> and

67@89:
6) � 67@;<:

6) . Moreover, it is required that '� → 0 at infinity.

According to potential theory, the boundary values of '� on

∂� can be calculated by using '>; i.e., for + ∈ ∂�,
'��+� � 1

4CD '>�E�(F�+, E�G�
⋅ dH � I�+�'>�+�, (4)

where F�+, E� � 1/|+ � E| is the Green function and I�+� is
a coefficient in relation to the solid angle subtended by ∂� at

+ . The second term of the right-hand side can be easily 

calculated if we have obtained the calculation result '>�+� by

using FEM. The first term in (4) is discretized on the boundary 

surface ∂�, and we get the linear equation

 LM � NLO,  (5)

with the boundary matrix N ∈ PQR�QR  and vectors LO , LM ∈PQR . The coefficient matrix N is usually almost dense matrix.

Completing the calculation of the computational cost �S�	�T
in (5) becomes the most time-consuming part in the 

micromagnetic simulation, if �
 ≅ �� .
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III. H-MATRICES FOR MICROMAGNETIC SIMULATION 

The first term in (4) has a form of the convolution integral. 

For remote interactions, the kernel functions of convolution 

integrals can be approximated by a degenerate kernel 

expressed by several terms of a series expansion. This implies 

that the submatrices of the coefficient matrix N in (5), which 

correspond to such remote interactions, can be approximated 

by the low-rank matrix approximation. We find these potential 

low-rank submatrices by H-matrices using clusters based on 

the geometrical information of surface elements.  

A H-matrix	NVW" , the approximation of	N, is characterized by 

a partition X  of �
��
  with blocks Y � Z[��[ ∈ X  and 

block-wise rank	\[. Most sub-matrices in NVW"  are expected to 

be low-rank. A low-rank matrix	NVW" |[, which approximates a 

sub-matrix NW|[  of the original matrix corresponding to 

block	Y, is represented by 

 NVW"|[: � ∑ _`�a`�bcd`e> , (6) 

where	_` ∈ P|	d|, a` ∈ P|fd|, and	\[ g h. The upper limit	h 

of the ranks of sub-matrices is usually set such that 

 ||N � NVW" ||i/||NVW" ||i g j for a given tolerance	j. 

The adaptive cross approximation (ACA) [5] is known to be 

one of the most efficient algorithms for the low-rank 

approximation in the form of (6). An attempt to apply the 

conventional H-matrices with ACA to micromagnetic 

simulations is reported in [6]. The HACApK [7], our own H-

matrices library, also adopts the ACA to approximate potential 

low-rank sub-matrices. However, if we apply the H-matrices 

with ACA to the calculation of the demagnetizing field as they 

exist, we will not be able to obtain an efficient approximation 

in some cases, due to the following two reasons.  

The first reason is that the kernel function of the integral 

operator in (4) has second order singularity. The conventional  

H-matrices employing ACA work well for a first order 

singularity problem such as electrostatic field analysis [4]. 

However, we found with the earthquake cycle simulation that 

the maximum rank h  of the H-matrix becomes larger when 

the kernel function has higher order singularity. To avoid this 

increase in the maximum rank h, we proposed the improved 

H-matrices with ACA in [3], which consists of a certain type 

of normalization and a new stopping criterion for the ACA.  

The second reason is that the presence of zero entries in N 

may disturb the pivoting strategy employed with the ACA. 

Such creation of zero entries happens in the case of 

interactions between mutually perpendicular elements. As 

shown in Fig. 1, our target model has mutually perpendicular 

surfaces. Even if we were to use the improved H-matrices with 

ACA as discussed above, the ACA would fail to provide 

efficient approximation in our models. Instead of the ACA, we 

adopt the ACA+ algorithm [8], which is a variant of ACA that 

changes the pivoting strategy to improve convergence.  

For the reasons discussed above, we have modified the 

HACApK library by adding a function of the improved H-

matrices with ACA+. 

IV. NUMERICAL EXPERIMENTS 

For a benchmark, we have provided two types of mesh data, 

as shown in Fig. 1. In both the sets of data, the magnetic 

material � in the shape of a short cylinder was divided into 

hexahedron elements. It was confirmed from these sets of data 

that the conventional H-matrices with ACA present as part of 

the HACApK failed to construct efficient approximations. 

We applied the improved H-matrices with ACA+ to (4) and 

obtained an approximation of (5). The number of surface 

elements �
was 31,666 (left) and 770 (right). We observed the 

values for maximum rank, average rank, and memory usage of 

the H-matrices by setting the tolerance to be j �1.0e-2, 1.0e-3, 

and 1.0e-4, respectively. The results are given in Table I, 

which also includes the memory compressibility of the H-

matrices against the dense matrices of equivalent sizes. In all 

cases, the ACA+ algorithm successfully constructed the low 

rank approximation in the form of (6) for all potential low-

rank sub-matrices. The ranks of the approximated sub-

matrices were suppressed under 30 even for the case where  

�
 � 31,666 and j �1.0e-4. Although the memory compress-

ibility is not excellent in the case of �
 � 770, the memory 

usage of the improved H-matrices constitutes only about 4% 

of that of the original dense matrix for the case of �
 �31,666. We can expect significant benefits from the use of H-

matrices when �
 is larger than at least several thousands. 

 

       
Fig. 1. Magnetic materials used for numerical experiments. 

 
TABLE I 

RANKS, MEMORY USAGE AND Compressibility OF H-MATRICES 

j  

�
 � 31,666 �
 � 770 

Rank  

Max/Ave. 

Memory 

(MB) 

Compress- 

ibility(%) 

Rank  

Max/Ave. 

Memory 

(MB) 

Compress 

ibility(%) 

1.0E-2 7/1 231 3.02 5/1 1.32 29.0 

1.0E-3 13/3 258 3.37 9/4 1.63 35.9 
1.0E-4 30/8 331 4.33 14/7 2.15 47.2 
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